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Abstract

There is now clear evidence that climate change affects terrestrial and marine ecosystems

and can cause phenological shifts in behavior. Utilizing sound to demonstrate phenology is

gaining popularity in terrestrial environments. In marine ecosystems, this technique is yet to

be used due to a lack of multiyear datasets. Our study demonstrates soundscape phenology

in an estuary using a six-year dataset. In this study, we showed that an increase in acoustic

activity of snapping shrimp and certain fish species occurred earlier in years with warmer

springs. In addition, we combined passive acoustics and traditional sampling methods

(seines) and detected positive relationships between temporal patterns of the soundscape

and biodiversity. This study shows that passive acoustics can provide information on the

ecological response of estuaries to climate variability.

Introduction

Over the past decades, researchers have reported changes in the cyclic nature of migratory and

breeding patterns in fauna (e.g. insects, amphibians, and birds) associated with climate change

[1–3]. It is important to monitor these shifts because the response of individual species may

vary and could disrupt interactions with other species, leading to ecosystem imbalance (e.g.

trophic mismatch) [4, 5]. Current advances in passive acoustic monitoring allow for long-term

assessments of soundscapes, which can provide instrumental information on biological pro-

cesses [6]. Long-term monitoring of sound can provide information on the timing of recurring

phenomena (e.g. migration, foraging, and spawning) and can detect shifts in these biological

processes [7, 8]. In marine ecosystems, there seems to be a knowledge gap in understanding

soundscape phenology, simply because there are few long-term datasets.

Soundscape ecology is evolving with novel technological advances, providing alternative

approaches in assessing behavior as well as community structure, function, and dynamics [6].

Recently, there has been an increasing interest in assessing whether passive acoustics can cap-

ture terrestrial biodiversity [e.g. 9, 10]. Applications to marine ecosystems are more challeng-

ing but evidence suggests that sound diversity can reflect species diversity (i.e. measured by

underwater visual census of fish) in mangrove, coral reef, seagrass, and rocky habitats [11, 12].
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In the southeast USA, significant contributors of biological sound to estuarine ecosystems

include snapping shrimp (genus Alpheus and Synalpheus) and soniferous fish (families Batra-

choididae and Sciaenidae). Snapping shrimp produce short, broadband calls using their claw,

that have been mainly associated with territorial interactions, communication, and foraging.

Soniferous fish species including silver perch Bairdiella chrysoura, black drum Pogonias cro-
mis, spotted seatrout Cynoscion nebulosus, and red drum Sciaenops ocellatus produce species-

specific calls by rapidly moving a pair of sonic muscles against their swim bladder [e.g. 13–17].

Captive studies have shown that calls produced by these fish species are mostly associated with

courtship behavior and reproduction [e.g. 16 & 17]. Many sound-producing species use estu-

aries periodically for spawning and nurseries, and sound / species richness can vary seasonally

[18, 19].

In this study, we deployed three passive acoustic recorders for six years (February 2013—

December 2018) in the May River, South Carolina (SC), USA. In addition, we used a catch and

release method (i.e. haul seines) to assess species diversity and abundance in intertidal creeks

located in close proximity to recording platforms. The specific objectives were to: (i) determine

temporal patterns of high, low, and broadband frequency sound pressure levels (SPLs) over

the six year time span; (ii) determine how certain environmental factors influence SPLs; (iii)

examine phenology of acoustic activity of snapping shrimp and sound producing fish species

(i.e. measured as changes in high and low SPLs, respectively); and (iv) determine temporal pat-

terns of species diversity and abundance, and examine how these indices correlate with the

soundscape.

Results

Temporal patterns of the estuarine soundscape

Comparisons of high (7,000–40,000 Hz), low (50–1,200 Hz), and broadband (1–40,000 Hz) fre-

quency SPLs from 2013 to 2018 revealed temporal and spatial differences (Figs 1 and 2, S1 Fig).

Broadband analysis included all physical sounds, biological calls and vocalizations, and anthro-

pogenic noise. Low frequency SPLs included fish calls, the lower bandwidth of snapping shrimp

snaps, bottlenose dolphin Tursiops truncatus vocalizations (which were few and random), phys-

ical sounds, and anthropogenic noise. High frequency SPLs included snapping shrimp snaps,

high frequency vocalizations of bottlenose dolphins, physical sounds, and anthropogenic noise.

We observed distinct temporal patterns in SPLs that were influenced by location, year,

lunar phase, day/night, tidal phase, temperature, day length, and rainfall. From the three ran-

dom forest models tested, the models including temperature explained the most variance in

the data as compared to models that included rainfall or day length as a factor (S1 and S2

Tables). The designed models with temperature explained 88%, 54%, and 68% of the data vari-

ability for high, low, and broadband SPL, respectively (S1 Table). We applied the same models

to the data that excluded files with physical sounds and anthropogenic noise (i.e. biological

sounds) for the high, low, and broadband frequency analysis. We observed similar results (i.e.

models that included temperature as a factor explained 90%, 56%, and 71% of the data variabil-

ity for high, low, and broadband SPL, respectively) (S2 Table). The factors that were most sig-

nificant in influencing SPL were location, temperature, and year (S1 and S2 Tables). We

observed significant differences in SPL values of biological origin among stations with 14M

having the highest values and 9M the lowest (p< 0.05). We detected the highest contribution

of anthropogenic noise (i.e. recreational boats) at station 37M (i.e. near the Intracoastal Water-

way; 11% of files analyzed) and the lowest at station 9M (i.e. near the headwaters; 2% of files

analyzed) (S2–S4 Figs). The anthropogenic noise detected was the most prevalent during the

day in the summer months (S2–S4 Figs).
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One striking pattern that we observed was in the seasonal fluctuations of SPLs, which

increased and decreased with the seasonal temperature changes of the estuary (Figs 1 and 2

and S1 Fig). These patterns (and the results presented below) were preserved even when files

with physical sounds and anthropogenic noise were removed, indicating that the sound pat-

terns were biological in nature (S2–S4 Figs). With an increase of water temperature for every

0.5˚C, 0.6˚C, and 0.8˚C during the springtime, we detected a corresponding increase of 1 dB

in SPL for high, low, and broadband frequencies, respectively. Higher values of SPLs were

present in the summer months as compared to lower values in the winter, early spring, and

late fall (Figs 1 and 2 and S1–S4 Figs). We observed significant differences in SPLs among

years for all examined frequency ranges (p< 0.05). The highest SPL values occurred in 2013

and 2014, the lowest in 2016 and 2017. In addition, snapping shrimp acoustic activity (i.e. mea-

sured as SPLs in the high frequency bandwidth of 7,000–40,000 Hz) was higher during the

day, low tide, and new moon as compared to the night, high tide, and full moon (p< 0.05).

SPLs within the low frequency band were higher during the night (i.e. associated with fish cho-

rusing) and followed an oscillating pattern associated with the lunar phase with higher values

recorded on the first quarter of the lunar phase (p< 0.05). Values in the broadband SPL fre-

quency range, which reflected a combination of all biological sounds, were the highest during

the night, new moon and falling tide (p< 0.05).

Fig 1. Time series of high frequency Sound Pressure Levels (SPL) from 2013 to 2018. Heat maps represent temporal

and spatial patterns of high (i.e. 7000–40,000 Hz) frequency SPLs reflecting snapping shrimp acoustic activity at

stations (A) 9M, (B) 14M, and (C) 37M in the May River, SC. Time is shown between noon and noon of the next day.

Gaps in data = white, temperature = black line, and daylight hours = dotted line. Green dots indicate first posterior

probability (PP) of change� 0.5 detected during springtime. At station (C) 37M first PP was not calculated for spring

2017 due to missing acoustic data. This dataset contained files with physical sounds and anthropogenic noise.

https://doi.org/10.1371/journal.pone.0236874.g001
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Soundscape phenology

Based on six years of data recorded at three stations, we examined the phenology of acoustic activ-

ity of snapping shrimp (as a measure of high frequency SPL) and fish (as a measure of low fre-

quency SPL) by detecting the date of the first abrupt change in SPL (i.e. posterior probability or

PP� 0.5). We calculated the first abrupt change for both data sets (i.e. one with all sounds and

noise, and the data set that excluded physical sounds and anthropogenic noise) but report exact

dates from the pure biological dataset (Fig 3; S3 and S4 Tables; S5–S13 Figs). In spring recordings

at station 9M, we found the first peak in high frequency SPL to occur on April 9, April 3, April 1,

March 25, March 23, and March 29 in 2013, 2014, 2015, 2016, 2017, and 2018, respectively (S3

Table; S2 and S5 Figs). At the same station, we detected the first peak in low frequency SPL to

occur on April 2, March 27, April 6, March 25, March 25, and March 28 in 2013, 2014, 2015,

2016, 2017, and 2018, respectively (S4 Table; S3 and S6 Figs). Similar patterns were found at sta-

tions 14M and 37M (S3 and S4 Tables). We found that in years with higher mean spring water

temperatures, the first peak in high, low, and broadband SPL occurred earlier as compared to

years with lower mean spring water temperatures (Fig 3A–3C). During the spring of 2017, an

increase in acoustic activity of snapping shrimp was detected 8 days earlier than the 6-year average

at station 9M (S3 Table). At the same station, during spring of 2017, acoustic activity of soniferous

fish was detected 4 days earlier than the 6-year average (S4 Table). Mean water temperature

Fig 2. Time series of low frequency Sound Pressure Levels (SPLs) from 2013 until 2018. Heat maps represent

temporal and spatial patterns of low (i.e. 50–1200 Hz) frequency SPLs reflecting fish and lower frequency range of

snapping shrimp acoustic activity at stations (A) 9M, (B) 14M, and (C) 37M in the May River, SC. Time is shown

between noon and noon of the next day. Gaps in data = white, temperature = black line, and daylight hours = dotted

line. Green dots indicate first posterior probability (PP) of change� 0.5 detected during springtime. At station (C)

37M first PP was not calculated for spring 2017 due to missing acoustic data. This dataset contained files with physical

sounds and anthropogenic noise.

https://doi.org/10.1371/journal.pone.0236874.g002
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during spring of 2017 was the highest (i.e. + 1.21˚C than the 6 year average) of all 6 years moni-

tored (S3 Table). On the other hand, the mean spring temperature in 2013 was the lowest (i.e.

-1.33˚C than the 6 year average), and the first peak in snapping shrimp acoustic activity was

detected 9 days later than the 6 year average at station 9M, while fish acoustic activity was detected

4 days later. We found similar patterns at stations 14M and 37M (S3 and S4 Tables). We found

negative correlations between mean spring water temperature and the timing of the first peak in

probability of change for high, low, and broadband SPLs at stations 9M and 14M (Fig 3D–3F). In

addition, during the winter of 2017–2018, we recorded the lowest, minimum water temperature

and the lowest SPL values of all three winters monitored (Figs 1 and 2). During the spring 2018,

the first peak in SPL was detected later than in the years with higher winter and spring tempera-

tures (S3 and S4 Tables). In the years with higher fluctuations in spring water temperature, there

were more abrupt changes in SPLs (S5–S13 Figs).

Soundscape and biodiversity

We used haul seines to estimate species richness, the Shannon-Wiener diversity index, and

total abundance of species in the May River estuary between 2016 and 2018. In total, we caught

Fig 3. Relationship between mean spring water temperature and day of year of first Posterior Probability (PP) of

change� 0.5. Left panels: lines with dots represent day of year of first PP� 0.5 of sound pressure level in (A) high

(7000–40,000 Hz), (B) low (50–1200 Hz), and (C) broadband (1–40,000 Hz) frequency range, while lines with squares

represent mean spring water temperature at stations 9M and 14M. Right panels: relationship between mean spring

water temperature and day of year of first PP� 0.5 of sound pressure level in (D) high (7000–40,000 Hz), (E) low (50–

1200 Hz), and (F) broadband (1–40,000 Hz) frequency range with corresponding mean spring water temperature at

stations 9M and 14M. This dataset did not contain files with physical sounds and anthropogenic noise.

https://doi.org/10.1371/journal.pone.0236874.g003
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5 species of invertebrates and 54 species of fish during seining of which some of these species

are capable of producing sound (S5 Table). However, many of the fish species caught in the

seines were young-of-the-year, and sound production of these juveniles is unknown (S5

Table). We detected temporal patterns in species richness, the Shannon-Wiener diversity

index, and abundance for invertebrates and fish species. We found lower species diversity and

abundance during wintertime (i.e. cooler season), and higher species diversity and abundance

during spring and summertime (warmer seasons). This temporal pattern of species diversity

and abundance followed the warming and cooling patterns of the estuary as well as the oscillat-

ing pattern of the biological soundscape (Fig 4 and S14 Fig). We found significant positive cor-

relations between species richness (as well as the Shannon-Wiener diversity index and

abundance) with high, low, and broadband SPLs (S15A–S15C Fig, S15E–S15G Fig and S16A–

S16C Fig); the highest correlations occurred with low frequency SPL (S15B and S15F Fig). In

addition, we found a significant positive regression between water temperature and species

richness (as well as Shannon-Wiener diversity index) but not between temperature and species

abundance (S15D and S15H Fig, and S16D Fig). Spatially, overall years, the highest species

richness, Shannon-Wiener Diversity index, and species abundance occurred at station 14M,

where we observed the highest SPL values (Fig 4 and S14 Fig).

Fig 4. Time series of broadband frequency SPLs, species richness, and species abundance from 2016 until 2018.

Heat maps represent temporal and spatial patterns of broadband (1–40,000 Hz) frequency SPLs reflecting all biological

sounds with corresponding species richness (black line), species abundance (blue dash line), and temperature (red

line) at stations (A) 9M, (B) 14M, and (C) 37M in the May River. Gaps in data = white. This dataset contained files

with physical sounds and anthropogenic noise.

https://doi.org/10.1371/journal.pone.0236874.g004
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Discussion

In this study, we used a six-year passive acoustic dataset to understand the annual and inter-

annual variability of an estuarine soundscape. Our findings show a strong relationship

between temporal changes in acoustic activities of estuarine organisms and environmental fac-

tors. We showed that the transition between winter and spring is a dynamic time-period with

an increase in biological sound during the spring, which mirrors the increase in phytoplank-

ton, zooplankton, invertebrates, and fish abundance that drive changes in primary, secondary,

and tertiary productivity within estuaries [20, 21]. In years with warmer spring temperatures,

this seasonal transition occurred earlier than in years with cooler spring temperatures. This

means that temperature plays an important factor in initiating certain behaviors (e.g. spawn-

ing), and earlier occurrences of these behaviors reflect an organismal response to climate vari-

ability [8].

Soundscapes and limitations

In addition to sounds of biological origin (e.g. snapping shrimp and fish sounds), factors such

as physical and anthropogenic sounds, water depth, and bottom topography may affect

received SPLs. Water flow, rain, wind, or wave action, unlike sounds of biological origin, occur

randomly [22–25]. These sounds are dominant in the low (200–2000 Hz) and high (15–20

kHz) frequency bandwidths [23]. However, during our analysis, we identified and removed

acoustic files that contained sounds associated with intense water flow, rain, wind/wave action,

and anthropogenic origin. In addition, this tidal estuary is subject to less wind and wave action

as compared to open ocean environments. Thus, we are quite confident that the SPLs and pat-

terns presented are of biological nature. Studies have shown that water depth and active space

can affect sound propagation [24, 25]. In our studies, water depth and river width increased

from the source towards the mouth and could potentially affect received SPL measurements.

Soundscape phenology

In our study, we showed that sound production in snapping shrimp and sound producing fish

species could serve as potential indicators of climate driven changes in spring phenology. In

fact, snapping shrimp respond very quickly to changes in temperature with increased snapping

activity with warmer temperatures and decreased activity with cooler temperatures [26].

Warmer temperatures also have the potential to impact spawning phenology of certain fish

species that have temperature-dependent gonadal development [27]. Our studies have shown

that positive temperature anomalies increase sound production in fish, while negative temper-

ature anomalies decrease calling [28]. In many fish species, spawning seasons are temperature

dependent since biologically important processes (e.g. maturation of gonads) require specific

temperature ranges. Similar to other studies, we detected a significant increase in snapping

shrimp and fish acoustic activity in the spring and summer and a significant decrease in the

fall and winter [e.g. 20, 21, 26, 29, 30]. These temporal variations in biological sound levels

indicate that there is a strong connection between sound production and the seasonal changes

in estuarine diversity and productivity.

In terrestrial ecosystems, the influence of climate change on phenology is well documented

and significant; however, in marine environments, this aspect is understudied due to the

inability to sample at the necessary time scales [4, 5, 8, 31, 32]. It is important to note that mon-

itoring soundscapes can assist in climate and phenology studies. By tracking vocalizations of

amphibians and birds, there is now clear evidence that climate influences the phenology of

breeding and migratory patterns [33, 34]. For example, in a terrestrial system, Buxton et al.

(2016) detected shifts in songbird phenology in varied thrush (Ixoreus naevius), Pacific wren
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(Troglodytes pacificus), and ruby-crowned kinglet (Regulus calendula) due to an earlier winter

to spring transition at Glacier Bay National Park, Alaska, USA [8]. Studies have shown that

common frogs (Rana temporaria) tend to breed earlier in warmer ponds, while 78 songbird

species in North America shifted their spring arrival earlier from overwintering grounds due

to rising spring temperatures [33, 34]. In marine ecosystems, passive acoustics offers an auton-

omous, technology-based approach to track spawning behaviors and migratory arrivals of spe-

cies that produce sounds, which is particularly useful in underwater habitats where visibility

can be limited (e.g. estuaries) and access can be challenging (e.g. deep ocean). With the advent

of newer, affordable recording systems and increased computational power, underwater

sound data can be collected and visualized at short time intervals (e.g. continuously, 20 min, or

60 min) and over long-term scales (i.e. years and decades) providing excellent temporal cover-

age to detect changes in phenology.

Soundscape and biodiversity

Many of the sound-producing fish species collected in haul seines were young-of-the-year, and

the ability of this life stage to produce sound is questionable. In the May River estuary, adult

male oyster toadfish, silver perch, spotted seatrout, and red drum are the major sound-produc-

ing species that produce courtship calls and choruses associated with spawning [16, 17, 18, 28].

All of these fish to some degree contribute to sound pressure levels in the low frequency band-

width [28]. In the May River, oyster toadfish, black drum, silver perch, and spotted seatrout

are residents in estuaries year-round, while adult red drum may move offshore in the colder

winter months; none of these fish produces sound in the cold, winter months from November

to February [18, 28].

Louder habitats may correlate with higher species richness and abundance [11, 12]. In the

present study, we showed that higher species diversity and abundance occurred during sea-

sonal periods (i.e. spring and summer) when biological sound levels in the low and high fre-

quency bandwidths were the highest. Furthermore, biologically louder areas of the tidal river

had higher diversity and abundance of invertebrates and fish. It is possible that the soundscape

could provide organisms with information about habitat quality, resources, and potential

predators [6]. It is also possible that the myriad of snapping shrimp and fish vocalizations

guide organisms (e.g. larva, fish, and marine mammals) into and within the estuary. Recent

laboratory and field playback experiments conducted in St. Johns, US Virgin Islands and Pam-

lico Sound, North Carolina, USA have reported that larva utilize sound cues to find coral / oys-

ter reefs based on the biogenic sound production of organisms occupying these habitats [35–

37]. The May River is a salt marsh estuary bordered by extensive patches of smooth cordgrass

Spartina alterniflora and oyster reefs comprised of the eastern oyster Crassostrea virginica. Pas-

sive acoustic recorders were placed on the bottom, close to the sides of the estuary, where live

and dead oyster patches were common. Habitat-specific sound characteristics may reflect an

important selection cue in driving settlement and recruitment patterns in marine communi-

ties, leading to higher biodiversity and potentially healthier habitats [36, 38].

While our study investigated temporal changes of the soundscape and diversity over a rela-

tively short timeframe (~ six years), this approach provides a blueprint for implementation

over longer time scales [3]. Listening to soundscapes has the potential to provide insight into

the response and resiliency of individual species and their behaviors. Integrating long-term

soundscape characterization into coastal marine observatory networks would be powerful

because of its utility in providing acoustic behavior measurements at multiple levels of biologi-

cal complexity (i.e. from snapping shrimp to fish to marine mammals) at time scales that

range from minutes to years. This approach allows us to eavesdrop on key behaviors that can
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change rapidly or gradually in response to environmental changes and human use; thus, it has

potential to provide a measure of resilience or shifting baselines in a globally changing

environment.

Materials and methods

Study area

The May River (32˚12’49”N, 80˚52’23”W) is located inland of the southern SC coast (Fig 5).

This large subtidal river is ~22 km long and ~0.01 km wide near the source, and ~1 km wide at

the mouth. The river is bordered by extensive patches of smooth cordgrass and oyster reefs

(i.e. eastern oyster) with the town of Bluffton on the north-eastern side and Hilton Head Island

at the mouth of the river. Water depth ranges from ~3 to ~7 m near the source and from ~4 to

~18 m near the mouth depending upon large semidiurnal tides. This area experiences a humid

subtropical climate with hot summers and mild winters.

Data collection and analysis

We deployed DSG-Ocean recorders (Loggerhead Instruments, Sarasota, FL, USA), water level

and temperature loggers (HOBO 100-Foot Depth Water Level Data Logger U20-001-02-Ti

and HOBO Water Temperature Pro v2 U22-001, Onset Computer Corporation, Bourne, MA,

USA) at stations 9M, 14M, and 37M between February 2013 and December 2018 following

methods previously described (Fig 5) [28]. Recorders collected sound samples for 2 min every

20 min at a sampling rate of 80 kHz over 22 deployments that were approximately 90 days

long.

We determined the root mean square (rms) SPL for the entire data set (i.e. each 2 min wav

file every 20 min; 392,106 files for all 3 stations) for high (i.e. 7000–40,000 Hz), low (i.e. 50–

1200 Hz), and broadband (i.e. 1–40,000 Hz) frequencies using custom scripts created in

MATLAB R2017b (MathWorks, Inc., Natick, MA, USA). We chose these ranges based on pre-

vious studies that revealed specific call frequencies for black drum (70–90 Hz), silver perch

(1000–1280 Hz), oyster toadfish (190–200 Hz), spotted seatrout (200–270 Hz), red drum

(120–160 Hz), and snapping shrimp (50–40 kHz) [28]. In the May River estuary, previous

studies have discovered that the soundscape is composed mainly of biological sounds (i.e.

snapping shrimp, fish, and bottlenose dolphins), physical sounds (i.e. wave, wind, water flow,

and rain), and anthropogenic noise (i.e. recreational boats) [18]. Broadband frequency SPL

values reflected biological sounds (i.e. snapping shrimp, fish, and bottlenose dolphins), physi-

cal sounds (i.e. wave, wind, water flow, and rain), and anthropogenic noise (i.e. recreational

boats) [18]. Low frequency SPLs included fish calls, the lower bandwidth of snapping shrimp

snaps, bottlenose dolphin vocalizations (which were few and random), physical sounds, and

anthropogenic noise [18]. High frequency SPLs included snapping shrimp snaps, high fre-

quency vocalizations of bottlenose dolphins, physical sounds, and anthropogenic noise [18].

In order to decipher biological patterns from physicals sounds and noise, we subsampled

the data set and manually analyzed files recorded on the hour (i.e. 130,702 files for all 3 sta-

tions). We flagged the files that contained biological sounds (i.e. snapping shrimp, fish, and

bottlenose dolphin), physical sounds (i.e. wave, wind, water flow, and rain), and anthropogenic

noise (i.e. recreational boats) [18]. Then, we removed the files that contained physical sounds

and anthropogenic noise from the subsampled data set and reanalyzed high, low, and broad-

band SPLs. This approach ensured that the patterns observed where of biological nature. We

created heat maps in MATLAB R2017b using the entire data set representing all SPL values

(i.e. 2 min on the hour including sounds of biological, physical, and anthropogenic origin) and

the subsampled data set (i.e. 2 min on the hour including only sounds of biological origin).
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These SPL values were plotted versus date and time at each acoustic station (i.e. 9M, 14M, and

37M) with corresponding water temperature and daylight hours.

We performed invertebrate and fish sampling one to two times per month in the May River

between 2016 and 2018 using a haul seine (i.e. seine width = 9.1 m, height = 1.2 m, and mesh

diameter = 3 mm) and block nets (i.e. additional stationary seine nets to stop animals from

escaping) at two to four locations per passive acoustic station (Fig 5). This sampling equated to

six to twelve seines per month selected randomly from a list of sites. Seine sites included tidal

pools (i.e. shallow pools of water created on the low tide), intertidal creeks (i.e. small secondary

or tertiary creeks feeding from the main river accessible on the low tide), and sides of the river

(i.e. stations located along the bank of the primary river). Before each seine, we recorded envi-

ronmental parameters (i.e. water temperature, salinity, pH, and dissolved oxygen) using a YSI

556 Handheld Multiparameter Instrument (YSI Inc./Xylem Inc., Yellow Springs, OH, USA),

and then we seined the area between the block nets. We measured the length and width of

each seine for an area calculation. We transferred the catch into a live well, quantified the

abundance of each species, and then released all the organisms at the original sampling loca-

tion. Mortality of the organisms was low during the wintertime (< 5%) and moderate during

summertime (~5 to 50%). We calculated average species richness per month based on the

number of species in each seine standardized by the seine area. In addition, we calculated the

average Shannon-Wiener diversity index divided by the area per month using package

“vegan” in R version 3.4.2 (R Core Team, 2012) [39]. We calculated mean species abundance

per month based on the abundance of all the species in each seine standardized by the seine

area. This work was conducted under South Carolina Department of Natural Resources permit

numbers 5135 and 5136 and IACUC protocol 2233-101181-022217.

Statistical analyses

To assess the significance of specific factors in explaining variations in SPLs, we used package

“Boruta”, a wrapper algorithm based on the random forest algorithm in R [40–49]. Random

forest models are non-parametric and do not require formal distribution assumptions. We

used “permutation importance” rather than the default “mean decrease in impurity impor-

tance” to assess the importance of factors included in the model, since permutation impor-

tance is less biased of continuous and categorical variables with many levels [41–44]. In the

final model, we set the specific parameters to: p = 0.01, mtry = 2, ntree = 200, nodesize = 5, and

set.seed = 42 [45–47]. We included location, year, lunar phase, tide, day/night, temperature,

day length, and rainfall as factors. We used four categories to differentiate the lunar and tidal

cycle following methods previously described, and we used National Oceanic and Atmo-

spheric Administration (NOAA) weather stations located close to the May River to obtain

rainfall data for each day (S6 Table) [28]. Before applying the model, we tested the data for col-

linearity. Temperature, rainfall, and day length exhibited multi-collinearity that could bias the

Boruta feature selection algorithm [47]. Hence, we created three different models for high,

low, and broadband frequency SPL. In the first set of models, we included temperature as a

factor, in the second set, we used day length, and in the third set, we used rainfall. Then, we

compared the R2 for each model that used a different factor, and we reported the models that

best explained the variability of the data. We removed files that contained physical sounds and

anthropogenic noise, and we followed the same approach to test variable importance. Then,

Fig 5. Map of the May River, SC, USA. Locations of stations 9M, 14M, and 37M that were acoustically monitored from February 2013 to December

2018 (blue) and seining stations monitored from May 2016 to December 2018 (yellow). (Inset) Location of the May River (black) in reference to the

USA coast.

https://doi.org/10.1371/journal.pone.0236874.g005
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we compared the results of the random forest models applied to the two data sets (i.e. one data

set that included biological sounds, physical sounds, and anthropogenic noise, and the second

data set that included only biological sounds). If categorical variables were significant, we

applied Dunnett-Tukey-Kramer pairwise multiple comparison tests adjusted for unequal vari-

ances and unequal sample sizes with 95% confidence levels using package “DTK” in R to deter-

mine whether group means were significantly different from each other [50].

To identify significant changes in high, low, and broadband SPLs values during the spring-

time, we applied a Bayesian change point analysis using package “bcp” in R [51, 52] to the data-

set that excluded all physical sounds and anthropogenic noise. Bayesian change point analysis

calculates the posterior probability (PP) for any given point in the time series that has an

abrupt change. We defined a probability as significant when the change between the following

and previous data point was� 50% [8]. For each year, we reported the mean spring water tem-

perature, date and day of year of the first significant PP, day anomaly (i.e. day of first signifi-

cant PP for each year minus the six year average of days with the first PP), and the value of the

first significant PP at each station. We defined spring as the time between the astronomical

vernal equinox and the summer solstice.

We tested for normality by investigating the distribution of the residuals, and center and

dispersion of monthly averages of species richness, or Shannon-Wiener diversity index, and

species abundance. We performed Pearson’s correlations between monthly averages of species

richness (or Shannon-Wiener diversity index and species abundance) and monthly averages

of high, low, and broadband frequency SPLs for all stations combined. In addition, using linear

regression, we tested the relationship between monthly averages of temperature as the inde-

pendent variable and corresponding monthly averages of species richness (or Shannon-Wie-

ner diversity index and species abundance) as the dependent variable. Correlations and

regressions were performed in MATLAB using two-sided hypothesis tests with a significance

level of 0.05.

Supporting information

S1 Fig. Time series of broadband frequency Sound Pressure Levels (SPLs) from 2013 until

2018. Heat maps represent temporal and spatial patterns of broadband (i.e. 1–40,000 Hz) fre-

quency SPLs reflecting all physical sounds, biological sounds, and anthropogenic noise at sta-

tions (A) 9M, (B) 14M, and (C) 37M in the May River. Time is shown between noon and noon

of the next day. Gaps in data = white, temperature = black line, and daylight hours = dotted

line. Green dots indicate first posterior probability (PP)� 0.5 detected during springtime. At

station (C) 37M first PP was not calculated for spring 2017 due to missing acoustic data.

(TIF)

S2 Fig. Time series of high frequency Sound Pressure Levels (SPLs) from 2013 until 2018

with physical sounds and anthropogenic noise files removed. Heat maps represent temporal

and spatial patterns of high (i.e. 7000–40,000 Hz) frequency SPLs reflecting snapping shrimp

acoustic activity at stations (A) 9M, (B) 14M, and (C) 37M in the May River. Time is shown

between noon and noon of the next day. Gaps in data = gray, files with physical sounds and

anthropogenic noise removed = white, temperature = black line, and daylight hours = dotted

line. Green dots indicate first posterior probability (PP)� 0.5 detected during springtime. At

station (C) 37M first PP was not calculated for spring 2017 due to missing acoustic data.

(TIF)

S3 Fig. Time series of low frequency Sound Pressure Levels (SPLs) from 2013 until 2018

with physical sounds and anthropogenic noise files removed. Heat maps represent temporal

PLOS ONE Estuarine soundscapes and biodiversity

PLOS ONE | https://doi.org/10.1371/journal.pone.0236874 September 3, 2020 12 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236874.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236874.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0236874.s003
https://doi.org/10.1371/journal.pone.0236874


and spatial patterns of low (i.e. 50–1200 Hz) frequency SPLs reflecting fish and lower portion

of snapping shrimp acoustic activity at stations (A) 9M, (B) 14M, and (C) 37M in the May

River. Time is shown between noon and noon of the next day. Gaps in data = gray, files with

physical sounds and anthropogenic noise removed = white, temperature = black line, and day-

light hours = dotted line. Green dots indicate first posterior probability (PP)� 0.5 detected

during springtime. At station (C) 37M first PP was not calculated for spring 2017 due to miss-

ing acoustic data.

(TIF)

S4 Fig. Time series of broadband frequency Sound Pressure Levels (SPLs) from 2013 until

2018 with physical sounds and anthropogenic noise files removed. Heat maps represent

temporal and spatial patterns of broadband (i.e. 1–40,000 Hz) frequency SPLs reflecting all

biological activity at stations (A) 9M, (B) 14M, and (C) 37M in the May River. Time is shown

between noon and noon of the next day. Gaps in data = gray, files with physical sounds and

anthropogenic noise removed = white, temperature = black line, and daylight hours = dotted

line. Green dots indicate first posterior probability (PP)� 0.5 detected during springtime. At

station (C) 37M first PP was not calculated for spring 2017 due to missing acoustic data.

(TIF)

S5 Fig. Estimated mean high frequency Sound Pressure Level (SPL) with Posterior Proba-

bility (PP) of change at station 9M. Posterior probability of change during springtime (light

blue line) with corresponding estimated mean high (7000–40,000 Hz) frequency SPL (dark

blue line) and corresponding water temperature (red line) in years (A) 2013, (B) 2014, (C)

2015, (D) 2016, (E) 2017, and (F) 2018. Stars indicate first positive (i.e. detected change in esti-

mated mean SPL due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)

S6 Fig. Estimated mean low frequency sound pressure level with Posterior Probability

(PP) of change at station 9M. Probability of change during springtime (light blue line) with

corresponding estimated mean low (50–1200 Hz) frequency SPL (dark blue line) and corre-

sponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D) 2016, (E)

2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated mean SPL

due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)

S7 Fig. Estimated mean broadband frequency sound pressure level with Posterior Proba-

bility (PP) of change at station 9M. Probability of change during springtime (dark blue line)

with corresponding estimated mean broadband (1–40,000 Hz) frequency SPL (light blue line)

and corresponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D)

2016, (E) 2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated

mean SPL due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)

S8 Fig. Estimated mean high frequency sound pressure level with Posterior Probability

(PP) of change at station 14M. Probability of change during springtime (light blue line) with

corresponding estimated mean high (7000–40,000 Hz) frequency SPL (dark blue line) and cor-

responding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D) 2016, (E)

2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated mean SPL

due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)
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S9 Fig. Estimated mean low frequency sound pressure level with Posterior Probability

(PP) of change at station 14M. Probability of change during springtime (light blue line) with

corresponding estimated mean low (50–1200 Hz) frequency SPL (dark blue line) and corre-

sponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D) 2016, (E)

2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated mean SPL

due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)

S10 Fig. Estimated mean broadband frequency sound pressure level with Posterior Proba-

bility (PP) of change at station 14M. Probability of change during springtime (light blue line)

with corresponding estimated mean (1–40,000 Hz) broadband frequency SPL (dark blue line)

and corresponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D)

2016, (E) 2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated

mean SPL due to an increase not a decrease in SPL values) PP� 0.5.

(TIF)

S11 Fig. Estimated mean high frequency sound pressure level with Posterior Probability

(PP) of change at station 37M. Probability of change during springtime (light blue line) with

corresponding estimated mean high (7000–40,000 Hz) frequency SPL (dark blue line) and cor-

responding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D) 2016, (E)

2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated mean SPL

due to an increase not a decrease in SPL values) PP� 0.5. Gray box = no data.

(TIF)

S12 Fig. Estimated mean low frequency sound pressure level with Posterior Probability

(PP) of change at station 37M. Probability of change during springtime (light blue line) with

corresponding estimated mean low (50–1200 Hz) frequency SPL (dark blue line) and corre-

sponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D) 2016, (E)

2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated mean SPL

due to an increase not a decrease in SPL values) PP� 0.5. Gray box = no data.

(TIF)

S13 Fig. Estimated mean broadband frequency sound pressure level with Posterior Proba-

bility (PP) of change at station 37M. Probability of change during springtime (light blue line)

with corresponding estimated mean broadband (1–40,000 Hz) frequency SPL (dark blue line)

and corresponding water temperature (red line) in years (A) 2013, (B) 2014, (C) 2015, (D)

2016, (E) 2017, and (F) 2018. Stars indicate first positive (i.e. detected change in estimated

mean SPL due to an increase not a decrease in SPL values) PP� 0.5. Gray box = no data.

(TIF)

S14 Fig. Time series of broadband frequency Sound Pressure Levels (SPLs) (i.e. with physi-

cal sounds and anthropogenic noise files removed), species richness, and abundance from

2016 until 2018. Heat maps represent temporal and spatial patterns of broadband (1–40,000

Hz) frequency SPLs with corresponding species richness (black line), species abundance (blue

dotted line), and temperature (red line) at stations (A) 9M, (B) 14M, and (C) 37M. Files with

physical sounds and anthropogenic noise removed = white and no data = gray box.

(TIF)

S15 Fig. Correlation and regression analysis of species richness and Shannon-Wiener

diversity index, sound pressure levels, and temperature. Pearson’s correlation between

monthly averages of species richness and monthly averages of sound pressure levels (SPLs) in

(A) high (7000–40,000 Hz), (B) low (50–1200 Hz), and (C) broadband (1–40,000 Hz)
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frequency ranges. Pearson’s correlation (r) between monthly averages of Shannon-Wiener

diversity index and monthly averages SPLs in (E) high (7000–40,000 Hz), (F) low (50–1200

Hz), and (G) broadband (1–40,000 Hz) frequency ranges. Linear regression between monthly

averages of temperature as the independent variable and monthly averages of (D) species rich-

ness and (H) Shannon-Wiener diversity index as dependent variables between 2016 and 2018

at all stations combined. For correlations N = 86 and for regression N = 90.

(TIF)

S16 Fig. Correlation and regression analysis of species abundance, sound pressure levels,

and temperature. Pearson’s correlation between monthly averages of species richness and

monthly averages of sound pressure levels (SPLs) in (A) high (7000–40,000 Hz), (B) low (50–

1200 Hz), and (C) broadband (1–40,000 Hz) frequency ranges. Linear regression between

monthly averages of temperature as the independent variable and monthly averages of (D) spe-

cies abundance between 2016 and 2018 at all stations combined. For correlations N = 86 and

for regression N = 90.

(TIF)

S1 Table. Significance of specific variables on sound pressure levels. Results of the Boruta, a

wrapper algorithm based on random forest, that tested the significance of specific variables on

high (7000–40000 Hz), low (50–1200 Hz), and broadband (1–40000 Hz) frequency sound

pressure levels (SPLs). Decision was confirmed important at p< 0.01; N = 130,679.

(XLSX)

S2 Table. Significance of specific variables on sound pressure levels with files that con-

tained physical sounds and anthropogenic noise removed. Results of the of the Boruta, a

wrapper algorithm based on random forest, that tested the significance of specific variables on

high (7000–40000 Hz), low (50–1200 Hz), and broadband (1–40000 Hz) frequency sound

pressure levels (SPLs). Decision was confirmed important at p< 0.01; N = 130,679.

(XLSX)

S3 Table. Results of first positive Posterior Probability of change (PP). Year, station, mean

spring water temperature, date, and day of year of first PP of change� 0.5 with corresponding

day anomaly, and value of PP for high (7000–40000 Hz) frequency sound pressure levels

(SPLs).

(XLSX)

S4 Table. Results of first positive Posterior Probability of change (PP). Year, station, mean

spring water temperature, date, and day of year of first PP of change� 0.5 with corresponding

day anomaly, and value of PP for low (50–1200 Hz) frequency sound pressure levels (SPLs).

(XLSX)

S5 Table. List of species that were caught and quantified during seining conducted one or

two times per month in close proximity to passive acoustic stations in the May River, SC.

(XLSX)

S6 Table. Locations of National Oceanic and Atmospheric Administration (NOAA)

weather stations located close to the May River, SC. Stations were used to obtain rainfall

data for each day. Data were obtained from: https://www.ncdc.noaa.gov/cdo-web/search.

(XLSX)

S1 Data.

(XLSX)
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S2 Data.

(XLSX)
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